We Wrote The Book on Grounding and Earthing

Toll Free: 888.367.0888

Electrical Grounding System Design

How To Do Electrical Grounding System Design

Grounding System Design & Planning

A grounding design starts with a site analysis, collection of geological data, and soil resistivity of the area. Typically, the site engineer or equipment manufacturers specify a resistance-to-ground number. The National Electric Code (NEC) states that the resistance-to-ground shall not exceed 25 ohms for a single electrode. However, high technology manufacturers will often specify 3 or 5 ohms, depending upon the requirements of their equipment. For sensitive equipment and under extreme circumstances, a one (1) ohm specification may sometimes be required. When designing a ground system, the difficulty and costs increase exponentially as the target resistance-to-ground approaches the unobtainable goal of zero ohms.

Data Collection

Once a need is established, data collection begins. Soil resistivity testing, geological surveys, and test borings provide the basis for all grounding design. Proper soil resistivity testing using the Wenner 4-point method is recommended because of its accuracy. This method will be discussed later in this chapter. Additional data is always helpful and can be collected from existing ground systems located at the site. For example, driven rods at the location can be tested using the 3-point fall-of-potential method or an induced frequency test using a clamp-on ground resistance meter.

Data Analysis

With all the available data, sophisticated computer programs can begin to provide a soil model showing the soil resistivity in ohm-meters and at various layer depths. Knowing at what depth the most conductive soil is located for the site allows the design engineer to model a system to meet the needs of the application.

Grounding Design

Soil resistivity is the key factor that determines the resistance or performance of an electrical grounding system. It is the starting point of any electrical grounding design. As you can see in Tables 2 and 3 below, soil resistivity varies dramatically throughout the world and is heavily influenced by electrolyte content, moisture, minerals, compactness and temperature.

Type of Surface Material Resistivity of Sample in Ohmmeters
Dry Wet
Crusher granite w/ fines 140 x 106 1,300
Crusher granite w/ fines 1.5” 4,000 1,200
Washed granite – pea gravel 40 x 106 5,000
Washed granite 0.75” 2 x 106 10,000
Washed granite 1-2” 1.5 x 106 to 4.5 x 106 5,000
Washed granite 2-4” 2.6 x 106 to 3 x 106 10,000
Washed limestone 7 x 106 2,000 to 3,000
Asphalt 2 x 106 to 30 x 106 10,000 to 6 x 106
Concrete 1 x 106 to 1 x 109 21 to 100

 

Soil Types or Type of Earth Average Resistivity in Ohm-meters
Bentonite 2 to 10
Clay 20 to 1,000
Wet Organic Soils 10 to 100
Moist Organic Soils 100 to 1,000
Dry Organic Soils 1,000 to 5,000
Sand and Gravel 50 to 1,000
Surface Limestone 100 to 10,000
Limestone 5 to 4,000
Shale’s 5 to 100
Sandstone 20 to 2,000
Granites, Basalt’s, etc. 1,000
Decomposed Gneiss’s 50 to 500
Slates, etc. 10 to 100